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ABSTRACT: Nowadays many studies have been done for prediction pipe failure rates in urban and other 
places, each of them with effective  parameters  has own features. So, managers and those responsible 
for these systems should have a more accurate and real knowledge of the structural failures and breakage 
in the main water supply pipes.  Several studies and methods have been introduced for predicting failure 
rates in urban water distribution network pipes by researchers, each of them has some special features 
regarding the effective parameters and many methods such as Classical and Intelligent methods are used, 
leading to some improvements. In this paper, effective parameters for predicting water distribution network 
are taken into two models (Hybrid SVR-CACO and SVR-CGA) and are compared with each other, an 
analysis and comparison of various types of kernel and loss functions is performed for SVM. This research 
is aimed at optimizing related parameters to SVM and selecting the optimal model of SVM for better pipe 
failure rate prediction by CACO and CGA. 

 
Keywords: Support vector regression, Continuous ant colony algorithm, Continuous genetic algorithm, 
Kernel functions, Pipe failure rates 

 
INTRODUCTION 

 
 One of the main objectives of efficient management and optimal operation of urban water distribution network is 
to present a model for predicting breakages of urban water distribution networks. This leads to achieving some goals 
such as supplying sanitary potable water of a high quality and quantity as required Accordance with WHO standards, 
reducing the waste of water caused by breakages as well as lowering the repair, maintenance and rehabilitation 
costs. 
 To achieve the mentioned objectives, In the first stage events and factors influence in water distribution networks 
must be considered and the effects of pipeline characteristics on failures of pipes be determined so as to reduce the 
number of accidents through correct and targeted policy-making, and as a result more precisely predict the pipe 
breakage rates in distribution systems and take necessary actions for preventing them.  
  To show the importance of this issue, in 1998, about one million accidents have occurred, attributing to 
themselves more than 20 percent of the total Water and Wastewater Companies budget used for repairs and 
rehabilitation. Of course, 30 percent of the incidents have occurred to the distribution system pipes. In addition, 
studies show the maintenance costs of the traditional water sector has increased from 3 million dollars in 1999 to 10 
million dollars in 2001 (Elahi Panah, 1998). In most cases, accidents and pipe failures occur as a result of several 
factors some of which being measurable such as age, length, diameter, depth and pressure of the pipes (Tabesh et 
al., 2009). Hence, order to provide a comprehensive model, all these factors should be considered. Many studies 
have employed with many methods, including ANN, ANFIS, fuzzy logic, and SVM in related field. 
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A model introduced that associated breakage factor with age. They presented an exponential model for predicting 
pipe failure rates (Shamir and Howard, 1979).  
 In another study with comparing among NLR, ANN and ANFIS methods with some effective parameters results 
of the comparisons indicated that ANN and ANFIS methods are better predictors of failure rates compared with NLR. 
The results of the comparison between ANN and ANFIS showed that ANN model is more sensitive to pressure, 
diameter and age than ANFIS; So, ANN was more reliable (Tabesh et al., 2009). 
 SVM techniques used non-linear regression for environmental data and proposed a multi-objective strategy, MO-
SVM, for automatic design of the support vector machines based on a genetic algorithm. MO-SVM showed more 
accurate in prediction performance of the groundwater levels than the single SVM (Giustolisi, 2006). 
   Pressure sensitive and EPANET was used for estimating and Hydraulic modeling. EPANET results were used 
as SVM inputs. Research results showed that the leakage rate is predictable and the smallest changes are 
predictable using the employed sensors (Mashford, 2009).  
   A prediction model of the pipe break rate was first developed using genetic programming. which minimizes the 
annual cost of break repair and pipe replacement. Finally, the optimal pipe replacement time was determined by the 
model (Xu et al., 2013).  
 Rough set theory and support vector machine (SVM) was proposed to overcome the problem of false leak 
detection. For the computational training of SVM, used artificial bee colony (ABC) algorithm, the results are compared 
with those obtained by using particle swarm optimization (PSO).Finally; obtained high detection accuracy of 95.19% 
with ABC (Mandal et al., 2012). 
 In this paper, combined ANN and GA model has been used to determine the effective parameters in pipe failure 
rates in water distribution system using the combination of ANN and GA. ANN model was developed in order to 
related parameters of breakage with pipe failure rates. The results lead to minimize the simultaneous error rates 
(Soltani and Rezapour Tabari, 2012).  
 In this paper, effective parameters in predicting pipes failure rate of water distribution network are taken into two 
models Hybrid SVR-CACO and SVR-CGA compared with them, an analysis and comparison of various types of 
kernel and loss functions is performed for SVR. This research is aimed at optimizing parameters related to SVR and 

selecting the optimal model of SVR for better pipes failure rate prediction by CACO and CGA algorithms  So in this 

research compared hybrid SVR-CGA and SVR-CACO models to predict pipe failure rates in water distribution 
networks to reduce the number of events.  By comparing these results with the other methods such as ANFIS, ANN, 
and ANN-GA that had been done in the past results show the SVR-CACO model has better performance than the 
other models especially in time elapse. Also, with combining SVR and CGA obtained better parameters proportional 
to the data type and the model shows better performance in accuracy.   
 

MATERIALS AND METHODS 
 

 Support vector machines (SVMs) are learning machines which implement the structural risk-minimization 
inductive principle to obtain a good generalization on a limited number of learning patterns (Gonzalez-Abril et al., 
2011). Support vector machine is an algorithm to maximize a mathematical function based on data sets. To create 
maximum margin, at first two adjacent parallel planes and a separator is designed. They get away from each other 
until they hit the data. The plane farthest from the others is the best separator (Carrizosa& Romero Morales, 2013). 
 Support vector machine regression (SVR) is a method to estimate the mapping function from Input space to the 
feature space based on the training dataset (Vapnik, 1992).  
 In the SVR model, the purpose is estimating w and b parameters to get the best results. w is the weight vector 
and b is the bias, which will be computed by SVM in the training process. 
  In SVR, differences between actual data sets and predicted results is displayed by ε. Slack variables are (ξi , ξi

∗ ) 
considered to allow some errors that occurred by noise or other factors. If we don’t use slack variables, some errors 

may occur, and then the algorithm cannot be estimated. Margin is defined as margin=
1

‖w‖
. Then, to maximize the 

margin, through minimizing ‖w‖2, the margin becomes maximized. These operations give in Equations (1- 3) and 
these are the basis for SVR (Vapnik, 1992). 

Minimize 
1

2
||w||

2
+C ∑ ξ

i
n
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                                                                                                         (1) 

                      subject to : 
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   C is a parameter that determines the tradeoff between the margin size and the amount of error in training and 

ξ
i
, ξ

i

*
 are slack variables. 

 
2.1. Kernel Functions 
 The basic idea of mapping input variable to the higher dimensional space is for easier separation by linear 
functions. Because it is difficult and more costly to work with high dimensional feature space, so we use feature 
space. A kernel function is a linear separator based on inner vector products and is defined as Equation. (4): 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗                                                                                                                                         (4) 

  If the data points are moved using  φ: x → φ(x) to the feature space (higher dimensional space), their inner 
products turn into Equation. (5) (Qi et al., 2013). 

k(xi,xj)=φ(xi)
T.φ(xj)                                                                                                                                   (5) 

xi is the support vectors and xj is the training data. 
 Kernel functions are equivalent to inner product in the feature space. Thus, instead of doing costly computing in 
feature space, we use kernel functions (Hofmann et al.,2008). Nonlinear kernel functions give more linear separable 
ability to the feature space; in the other words, we add so much to the dimensions that data are separated in a linear 
form.  
 The most important kernel functions and the related parameters are included in Table 1, where U and V are 
training and test data respectively.  
 

Table 1.  kernel functions used in SVR 

Related variablesFormulaKernel function Type

P1 defines RBF function width ,like as .𝛿
k = e

− 
(u−v)(u−v)′

2p1
2

Gaussian RBF 

P1 defines ERBF function width like as RBF.
k=e

−√
(u−v)(u−v)′

2p1
2

Exponential RBF

P1 determines Polynomial degree.k = (UV +  1)p1Polynomial

 Z=1+UV+ (
1

2
)UV min(u,v) - (

1

6
) min (u, v)3 

K=Prod(z)

Spline 

 
αi is the vector of Lagrange multipliers and represent support vectors. If these multipliers are not equal to zero, they 
are multipliers; otherwise, they represent support vectors (Vapnik and Chapelle, 2000).   
Here, w is equal to Equation. (6).  

w=∑ (αi-α̅i)xii                                                                                                                                               (6) 
Accordingly, the SVR function F(x) becomes the following function. 

F(x)= ∑ (αι̅-αi)K(xi,x)+b   i=1                                                                                                                      (7) 
 Equation. (7) can map the training vectors to target real values, while allowing some errors. To minimize errors 
and minimize risks, the goal is to find a function that can minimize risks, Equation. (8). 

Remp[f]=
1

l
∑ c(xi,yi

,f(xi))                           l
i=1                                                                                               (8) 

𝑐(𝑥𝑖 , 𝑦𝑖 , 𝑓(𝑥𝑖)) , denotes a cost function determining how the estimation error will be penalized based on empirical 
data X. Remp represents empirical risks. While dealing with a few data in very high dimensional spaces, this may not 
be a good idea, as it will lead to over-fitting and thus bad generalization properties. Hence, one should add a capacity 

control term, which in the SV results is to be ‖w‖2 and leads to the regularization of risk function (Smola and 
Scholkopf, 1998). 

Rreg[f]=Remp[f]+
λ

2
 ‖w‖2                                                                                                                           (9) 

 In Equation. (9), 𝜆 > 0 and is used for regularization.  Loss function determines how to penalize the data while 
estimating. In this study, epsilon and quad loss functions were used and compared with each other. As noted, the 
loss function can determine how to penalize SVM errors. ε-insensitive loss function shown in Fig.1.  
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Figure 1.  ε-insensitive loss function 

 
 A Loss function implies to ignore errors associated with points falling within a certain distance. If ε-insensitive 
loss function is used, errors between -𝜀 and +𝜀 are ignored. If C=Inf is set, regression curve will follow the training 

data inside the margin determined by  𝜀 (Smola and Scholkopf, 1998). The related equation is shown in Equation. 
(10). 

|ξ|
ε
= {

0                 if  |ξ|≤ε 

|ξ|- ε     otherwise.
                                                                                                                        (10) 

     The quadratic loss function Fig.2 drives the proximal hyper plane close enough to the class itself, and it penalizes 
every error (Qi et al., 2013). If quadratic loss function is used, memory requirements will be four times less than ε-
insensitive loss function (Gunn, 1998). 

 
Figure 2. quadratic loss function 

 
3. Searching Algorithms 
 Generally so far, the previous researches have appropriated SVM parameters obtained by trial and error. In the 
trial and error method, each parameter is tested to approach the appropriated values. However, this method has very 
time-consuming and is not sufficiently accurate. 
 Therefore, in this study integrated models compare and proposed to search for the possible solutions. As it 
noted, using the trial and error method is suitable for simpler and easier problems, but is not prone for complex ones 
of higher dimensional space, because it takes more time and ultimately might not converge to the solution. Therefore, 
due to the higher dimensions of the problem and the number of data, the integrated models were considered. Also, 
intelligent searching models have a high capability and suitable performance related to this problem; so, these 
algorithms were selected. In this study, search doing in practical solution with intelligent searching algorithms and 
the best of them selected for choosing an optimal SVR structure. Considering the fact that the parameters used in 
SVR and corresponding parameters are continuous in the solution Space, Continuous GA and Continuous ACO had 
been used, because when the variables are continuous, it is more logical to represent them by floating-point numbers. 
 
3.1. Continuous ANT colony 
 The Ant colony optimization algorithm is an optimized technique for resolving computational problems which can 
be discovered good paths. The process by which ants could establish the shortest path between ant nests and food. 
Initially, ants leave their nest in random directions to search for food. 
 This technique can be used to solve any computational problem that can be reduced to finding better paths in a 
graph these formulas have been shown in Equations. (11) and (12). This method had been chosen from (Hong et 
al., 2011) paper. 
 

Pk(i,j)= {
{[τ(i,s)]α[η(i,s)]β

sϵMk

arg max
 , if q≤q0

Eq. (12)
                                                                                                       (11) 
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Pk(i,j)= {
[τ(i,s)]α[η(i,s)]β

∑ [τ(i,s)]α[η(i,s)]βsϵMk

,j∉Mk

0                             O.w

                                                                                                              (12) 

 
 where 𝜏(i, j) is the pheromone level between node i and node j, 𝜇(i, j) is the inverse of the distance between 
nodes i and j. In this study, the forecasting error represents the distance between nodes. The 𝛼 and 𝛽 are parameters 
determining the relative importance of pheromone level and Mk is a set  of  nodes  in the next column of the node  
matrix for ant k. q is a random uniform variable [0, 1] and the value q0 is  a constant between 0 and 1, i.e., q0 𝜖[0, 1].  
The local and global updating rules of pheromone are expressed as Equation. (13) and (14), respectively 

τ(i,j)=(1-ρ) τ(i,j)+ρτ0                                                                                                                               (13) 

τ(i,j)=(1-δ)τ(i,j)+δΔτ(i,j)                                                                                                                         (14) 
The δ is the global pheromone decay parameter, 0 <δ< 1, and, based on authors’ experiments. 

The Δ  (i, j), expressed as Equation. (15), is used to increase the pheromone on the path of the solution 
 

Δτ(i,j) = { 
1

L
    , if (i,j)ϵglobalbest route

 0                   O.W                     
                                                                                                (15) 

where L is the length of the shortest route. 
 
 At first to get SVR related parameters, each parameters show by 10 nodes, so the range of numbers limited 
between [0, 9]. For getting more accurate computed parameters 5 numbers considered. 
 The values ρ of and τ0 are set to be 0.2   and 1, respectively. Assume the limits of parameters σ, C, and ε are 
1, 100,000, and 1, respectively. Numbers of nodes for each ant set to 50, so total nodes are equal to 150. 
 
3.2. Continuous Genetic Algorithm 
 The continuous GA is inherently faster than the binary GA, because the chromosomes do not have to be decoded 
prior to the evaluation of the cost function (Haupt and Haupt, 2004). Thus, using the aforementioned variables like 
kernel parameters as decision variables in a population-based optimization strategy may be a way of constructing 
an optimal SVR. To cover the entire search space, the initial population was considered randomly, commensurate 
with the best fitness function Equation. (16) of each population; the best of them has been selected. Some properties 
of GA, such as the ability of solving hard problems, noise tolerance, easy to interface and hybridize, make them a 
suitable and quite workable technique for parameter identification of fermentation models (Angelova and Atanassov, 
2012).  
 

Minimize cost:|Y̅pred-Ytrain|                                                                                               (16) 

 
  where �̅�𝑝𝑟𝑒𝑑 and  𝑌𝑡𝑟𝑎𝑖𝑛  are predicting and training output, respectively. In this algorithm, the parameters must 

be optimized and determined by GA that includes iterations to reach convergence. At first, Number of chromosomes, 
mutation rates, and crossovers must be correctly determined to reach the best results. The next step, Objective 
function, decision variables and their constraints must be determined in this model. To start the optimization process, 
initial GA variables like mutation, crossover and selection rates must be determined. Also required parameters for 
SVR such as kernel and loss functions must be determined. These parameters vary according to the kernel functions 
and data types.  Fig.3 shows SVR-CGA and SVR-CACO hybrid algorithms which predict the pipe failure rates. 
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Figure 3. The proposed SVR-CGA and CACO-SVR hybrid system which predict the pipe failure rates 

 
 In this research, the selection rate is considered at 0.5; thus, the chromosomes must be firstly sorted by their 
fitness functions and half of the best population is selected for the next generation. The single point Crossover rate 
has been considered and mutation rate selected between 0.1 and 0.2 based on its kernel function type. This research 
has been developed by MATLAB (version 7.12(R 2011a)) and SVM Toolbox and parameters were localized by 
Continues GA to solve these problems. Equation. (17) is used for normalizing the Input values to the models.   

 xn=0.8
(x-xmin)

(xmax-xmin)
+0.1                                                                                                                           (17) 

  
 x is the original value ,x min is the minimum value and  x max is the maximum value between input values,  and x 

n  shows normalized values. So that, input results are between [0.1, 0.9]. 
 Also, In this paper, the root of mean squared error (RMSE), normal root of mean squared error (NRMSE) and 
coefficient of determination(R 2) are used as assessment criteria of the reliability of the model. 

R
2

(∑ (yactual-y̅actual)
n
i=1 (ypred-y̅pred

))
2

∑ (yactual-y̅actual)
2n

i=1
∑ (ypred-y̅pred

)
2   

n
i=1

                                                                                                      (18) 

𝑅𝑀𝑆𝐸 = √    
1

𝑛
∑ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙𝑖

− 𝑦𝑝𝑟𝑒𝑑𝑖
)

 2
  𝑛

𝑖=1                                                                                                (19) 

       NRMSE=
RMSE

var(yactual)
                                                                                                                          (20) 

  
 Where yactual is the observed data, yprediction is the predicted data, yaverage is the average of data and n is the number 
of observations. Also, var(y actual) is the variance of actual data. 
 
4. Case Study

   In this study, in addition to the quality of data, accuracy of them has been considered. To evaluate the proposed 

hybrid algorithm a part of a water distribution network of a city in Iran is considered as the study area this city is one 

of the most travelled cities Fig.4. The area of this district is 2,418 hectares and covers 93,719 properties with 579,860 

m of distribution pipes including steel pipes 800, 700 and 600 mm in diameter, and asbestos cement and cast iron 

pipes 400, 300, 250, 200, 150, 100 and 80 mm in diameter. The installation and execution of the network pipelines 

in this area generally started in 1981. According to statistical records, this region has the greatest failure rate 

especially on asbestos cement. In this study, due to incomplete data on steel and cast iron pipes, asbestos cement 

pipes are only used in the modeling process. 
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Figure 4. Schematic of study area and pressure measurement points 

 
 In order to failure rate modeling of the asbestos cement pipes, the daily events recorded in the 2005 to 2006 
years over 2438 record data such as diameter, year of  implementation ,installation depth, total accident happens 
and the average of  hydraulic pressure. These data have been collected from local water and water waste company. 
 

RESULTS AND DISCUSSION 
 
 Input parameters to the combined SVR-CACO and SVR-CGA models included installation depth, pressure, age, 
length, and diameter and the output parameter model base on predicted output values from the training input values. 
 Calculated variables to appropriate the best values of the kernel functions based on the best type of loss is as 
follows: 
1- According to  ε-insensitive function that consists of the effective parameters of kernel function (ε, C). 
2- According to quadratic loss function that consists of the effective parameters of kernel function (C). 

 The results obtained by mentioned algorithms and appropriate kernel and loss functions have been shown in 
Table 2. 
 
 
 

 
 According to the above results, quadratic loss function shows better results in time and other parameters than 
ε-insensitive in Table 2. 

εP1CNRMSERMSER2 Time(s)Algorithm TypeKernel Type 

0.00348 3.125 124.56 0.01829 0.00723 0.9998929 7970.8 CACO- SVR 
 
RBF

ε-insensitive   

0.0001141.49834.09060.022020.007950.999834110416SVM-CGA 

0.03156 0.712 115.79 0.20325 0.07701 0.9908480 7896.5 CACO-SVR 
 
ERBF 0.0007261.1031176.0210.172770.014070.9739223 8798SVM-CGA 

0.02346 6.315 54.754 1.24770 0.44232 0.4876852 7919.4 CACO-SVR  
Polynomial 0.8424139.27878.75831.901570.732220.49546128516SVM-CGA 

0.12680 - 43.57 1.01165 0.36977 0.6629965 7311.7 CACO-SVR 
 
Spline 0.142851-4.25080.901980.339090.68674119880SVM-CGA 

-------- 5.415 72.739 0.00812 0.00286 0.9999767 317.23 CACO-SVR 
RBF

quadratic 

--------- 3.496344.490.006910.002750.9999841549.4SVM-CGA 

-------- 3.83 344.58 0.20145 0.07599 0.9859318 259.82 CACO-SVR 
ERBF

-------- 1.7710.083330.041750.998930.9989343314.9SVM-CGA 

-------- 5.62 1456.89 0.30398 0.11415 0.9623311 711.35 CACO-SVR 
Polynomial

-------- 8.5460.550490.199160.906830.9068322992.35SVM-CGA 

-------- - 356.8 0.81007 0.31790 0.7856149 206.03 CACO-SVR 
Spline

-------- 0.746450.276340.784100.7841079391.9SVM-CGA 

-------- - 224.57 0.73376 0.27653 0.7877169 198.56 CACO-SVR 
linear 

-------- 0.343240.935430.733050.73305715182.4SVM-CGA 

Table 2.  Comparing results between CACO and CGA 
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 Comparing results between Hybrid SVR-CACO and SVR-CGA models has been shown in Fig.5, time considered 
as a comparison parameter.  By over looking at Table 2 and Fig.5 can be found CACO searching algorithm has a 
better performance in time-consuming than the CGA. 
 

 
Figure 5. comparing between Hybrid SVR-ACO and SVR-CGA models time 

 
 Results in Table 2 shows the correlation and estimation of error in the RBF kernel has an excellent performance 
relative to the other kernel functions also by comparing the results in Table 2, shows quadratic loss function present 
a better result than ε-insensitive loss function. 
 Results from ε-insensitive loss function and related kernel functions present in Fig. [6-8]. 

Figure 6. Results by Poly kernel function and  loss 
function 

 
Figure 7. Results by RBF kernel function and  loss 

function 

 According to the Figure results can be found CACO searching algorithm as same as CGA in accuracy but it has 
a better performance in time-consuming than the CGA. Fig. 7 shows the best prediction result than the other kernelin 
upper figures.  
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 8. Results by eRBF kernel function and Quadratic        Figure 9. Results by eRBF kernel function and Quadratic  
                                             loss function                                                                                     loss function 
       

                    Results from quadratic loss function and related kernel functions present in Fig.9 and Fig.10. 
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Figure 10. Results by Polynomial kernel function and Quadratic loss function

 
Upper Figures show the quadratic loss function performances, According to these figures our results have 

a better prediction and show better results than ε-insensitive loss function. 
 

CONCULSION 
 

 In the recent decades, public health and health care has been more attention by responsible in each region. One 
critical infrastructure to achieve the promote public health and better quality in water according to WHO standard is 
the water distribution systems ready to operate and timeless through correct management and use optimized. 
 So in this research compared hybrid SVR-CGA and SVR-CACO models to predict pipe failure rates in water 
distribution networks to reduce the number of events.   
 The compared SVR models in order to make the relationship between the failure rate parameters in pipes with 
the number of events and failure of pipes considered as a main component of urban infrastructure, water supply and 
hygiene and health. Also by using the CGA and CACO optimal kernel function and SVR related parameters has been 
found. 
 By comparing these results with the other methods such as ANFIS, ANN, and ANN-GA that had been done in 
the past, results show the SVR-CACO model has better performance than the other models especially in time elapse. 
Also, with combining SVR and CGA obtained better parameters proportional to the data type and the model shows 
better performance in accuracy.  
 By comparing among the kernel functions RBF and eRBF offered favorable results and in the loss functions 
regard to quadratic time and accuracy quadratic loss function has been shown more favorable results than ε-
insensitive loss function. 
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